Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 21.191
1.
Arch Microbiol ; 206(6): 245, 2024 May 03.
Article En | MEDLINE | ID: mdl-38702537

Production of carotenoids by yeast fermentation is an advantaged technology due to its easy scaling and safety. Nevertheless, carotenoid production needs an economic culture medium and other efficient yeast stains. The study aims to isolate and identify a yeast strain capable of producing carotenoids using a cost-effective substrate. A new strain was identified as Rhodotorula toruloides L/24-26-1, which can produce carotenoids at different pretreated and unpretreated sugarcane molasses concentrations (40 and 80 g/L). The highest biomass concentration (18.6 ± 0.6 g/L) was reached in the culture using 80 g/L of hydrolyzed molasses. On the other hand, the carotenoid accumulation reached the maximum value using pretreated molasses at 40 g/L (715.4 ± 15.1 µg/g d.w). In this case, the ß-carotene was 1.5 times higher than that on the control medium. The yeast growth in molasses was not correlated with carotenoid production. The most outstanding production of The DPPH, ABTS, and FRAP tests demonstrated the antioxidant activity of the obtained carotenogenic extracts. This research demonstrated the R. toruloides L/24-26-1 strain biotechnological potential for carotenoid compounds. The yeast produces carotenoids with antioxidant activity in an inexpensive medium, such as sulfuric acid pretreated and unpretreated molasses.


Fermentation , Molasses , Rhodotorula , Saccharum , beta Carotene , Rhodotorula/metabolism , Rhodotorula/genetics , Rhodotorula/growth & development , Rhodotorula/isolation & purification , Rhodotorula/classification , Saccharum/metabolism , beta Carotene/metabolism , beta Carotene/biosynthesis , Carotenoids/metabolism , Antioxidants/metabolism , Biomass , Culture Media/chemistry , Phylogeny
2.
World J Microbiol Biotechnol ; 40(6): 197, 2024 May 09.
Article En | MEDLINE | ID: mdl-38722384

Physiological and environmental cues prompt microbes to synthesize diverse carotenoids, including dihydroxy xanthophylls, facilitating their adaptation and survival. Lutein and its isomeric counterpart, zeaxanthin, are notable dihydroxy xanthophylls with bioactive properties such as antioxidative, anti-inflammatory, anticancer, and neuroprotective effects, particularly beneficial for human ocular health. However, global natural resources for co-producing lutein and zeaxanthin are scarce, with zeaxanthin lacking commercial sources, unlike lutein sourced from marigold plants and microalgae. Traditionally, dihydroxy xanthophyll production primarily relies on petrochemical synthetic routes, with limited biological sourcing reported. Nonetheless, microbiological synthesis presents promising avenues as a commercial source, albeit challenged by low dihydroxy xanthophyll yield at high cell density. Strategies involving optimization of physical and chemical parameters are essential to achieve high-quality dihydroxy xanthophyll products. This overview briefly discusses dihydroxy xanthophyll biosynthesis and highlights recent advancements, discoveries, and industrial benefits of lutein and zeaxanthin production from microorganisms as alternative biofactories.


Lutein , Xanthophylls , Zeaxanthins , Lutein/biosynthesis , Lutein/metabolism , Zeaxanthins/metabolism , Xanthophylls/metabolism , Metabolic Engineering/methods , Carotenoids/metabolism , Bacteria/metabolism , Humans , Biosynthetic Pathways
3.
J Transl Med ; 22(1): 424, 2024 May 04.
Article En | MEDLINE | ID: mdl-38704581

BACKGROUND: The measurement of the skin carotenoids using the Veggie Meter® has emerged as a rapid objective method for assessing fruit and vegetable intake, highly recommended by the Mediterranean Diet (MD), which represents one of the healthiest dietary patterns, worldwide. This study aimed to examine differences in skin carotenoid content and degree of adherence to the MD pattern between two adult populations from Southern Italy and the Dominican Republic. METHODS: This cross-sectional study enrolled a total of 995 adults, 601 subjects from Italy and 394 from the Dominican Republic. All participants underwent anthropometric measurements and skin carotenoid assessment by Veggie Meter®. Adherence to the MD and lifestyle were evaluated using the Mediterranean Diet Adherence Screener (MEDAS) and the Mediterranean Lifestyle Index (MEDLIFE) questionnaires. Correlations between the skin carotenoid and MEDAS score were estimated using Pearson's correlation coefficient. Multiple linear regression models were created to determine variables that affect skin carotenoid score for both populations. RESULTS: Mean total skin carotenoids were higher in the Italian compared to the Dominican Republic population (342.4 ± 92.4 vs 282.9 ± 90.3; p < 0.005) regardless of sex (women: 318.5 ± 88.9 vs 277.3 ± 91.9, p < 0.005 and men: 371.7 ± 88.3 vs 289.5 ± 88.1, p < 0.005), and remaining statistically significant after age-adjustment of the Dominican Republic sample. Using the MEDAS questionnaire, we found a higher MD adherence score in the Italian than in the Dominican Republic population also after age-adjusting data (7.8 ± 2.1 vs 6.2 ± 3.7; p < 0.005) and even when categorized by sex (Italian vs age-adjusted Dominican Republic women: 7.9 ± 2.1 vs 6.3 ± 2.6; Italian vs age-adjusted Dominican Republic men: 7.7 ± 2.2 vs 6.0 ± 4.7; p < 0.005). Using the MEDLIFE test, total Italians presented a lower score with respect to the age-adjusted Dominican Republic population (3.2 ± 1.2 vs 3.4 ± 1.4; p < 0.05). In multiple regression analysis, skin carotenoids were associated with sex and negatively associated with BMI in the Italian population (sex: ß: 54.95; 95% CI: 40.11, 69.78; p < 0.0001; BMI: ß: - 1.60; 95% CI: - 2.98,0.86; p = 0.03), while they resulted associated with age and sex in the Dominican Republic population (age: ß: 2.76; 95% CI: 1.92, 3.56; p < 0.001; sex: ß: 23.29; 95% CI: 5.93, 40.64; p = 0.009). Interestingly, skin carotenoids were positively correlated with MEDAS score in both populations (Italy: r = 0.03, p < 0.0001, Dominican Republic: r = 0.16, p = 0.002). CONCLUSIONS: This study provides the assessment of the adherence to the MD and skin carotenoid content in adults living in Southern Italy and the Dominican Republic, showing a higher MD adherence score and a skin carotenoid content in inhabitants from the Mediterranean region. Our findings highlight the need to globally encourage fruit and vegetable intake, particularly in non-Mediterranean area.


Carotenoids , Diet, Mediterranean , Skin , Humans , Italy , Dominican Republic , Carotenoids/analysis , Carotenoids/metabolism , Female , Male , Adult , Skin/metabolism , Middle Aged , Cross-Sectional Studies , Patient Compliance/statistics & numerical data , Surveys and Questionnaires
4.
Physiol Plant ; 176(3): e14327, 2024.
Article En | MEDLINE | ID: mdl-38716559

Our goal was to determine whether anthocyanin-producing species (red) use different photoprotective strategies to cope with excess light during fall senescence compared with non-anthocyanin-producing species (yellow). In a previous study, we found that a yellow species retained the photoprotective PsbS protein in late autumn, while a red species did not. Specifically, we tested the hypothesis that red species make less use of zeaxanthin and PsbS-mediated thermal dissipation, as they rely on anthocyanins for photoprotection. We monitored four red (Acer ginnala, Rhus typhnia, Parenthocissus quinquefolia, Viburnum dentatum) and four yellow species (Acer negundo, Ostrya virginiana, Vitis riparia, Zanthoxylum americanum) throughout autumn senescence and analyzed pigments, protein content, and chlorophyll fluorescence. We found yellow species retained the PsbS protein at higher levels, and had higher dark retention of zeaxanthin in late autumn relative to red species. All species retained lutein and the pool of xanthophyll cycle pigments in higher amounts than other carotenoids in late autumn. Our data support the hypothesis that red species use anthocyanins as a photoprotective strategy during autumn senescence, and therefore make less use of PsbS and zeaxanthin-mediated thermal dissipation. We also found species-specific variation in the particular combination of photoprotective strategies used.


Anthocyanins , Chlorophyll , Plant Leaves , Seasons , Plant Leaves/metabolism , Plant Leaves/radiation effects , Plant Leaves/physiology , Anthocyanins/metabolism , Chlorophyll/metabolism , Plant Senescence , Zeaxanthins/metabolism , Carotenoids/metabolism , Light , Plant Proteins/metabolism , Xanthophylls/metabolism
5.
J Oleo Sci ; 73(5): 665-674, 2024.
Article En | MEDLINE | ID: mdl-38692890

Sacha inchi seed oil is a food matrix rich in bioactive constituents, mainly polyunsaturated fatty acids. In this study, the characteristics of color, carotenoid content, tocopherols, and volatile aroma compounds in eight sacha inchi seed (Plukenetia volubilis L.) oil accessions were evaluated. Results showed that the oil obtained from the accessions presented a lightness and chroma of 91 to 98 units and 6 to 10 units respectively, while the hue angle ranged between 93 to 97 units. The total carotenoid content in the different accessions ranged from 0.6 to 1.5 mg/kg, while γ- and δ-tocopherol ranged from 861.6 to 1142 mg/kg and 587 to 717.1 mg/kg. In addition, the total content of tocopherols varied between 1450 and 1856 mg/kg and the δ/γ ratio ranged between 0.58 and 0.70. The oils from the accessions PER000408 (861 µg/kg) and PER000411 (896 µg/kg) were those with the higher volatile concentration, especially 1-hepten-3-ol, 2-nonanol, (E)-3-hexen- 1-ol, (E)-2-hexenal, and 1-hexanol. In this study, the variability of the oil obtained from 8 accessions were observed, from which promising accessions can be selected for continuous investigations of the new sacha inchi seed genotypes.


Carotenoids , Plant Oils , Seeds , Tocopherols , Volatile Organic Compounds , Carotenoids/analysis , Tocopherols/analysis , Seeds/chemistry , Volatile Organic Compounds/analysis , Plant Oils/analysis , Plant Oils/chemistry , Brassicaceae/chemistry
6.
PLoS One ; 19(5): e0302541, 2024.
Article En | MEDLINE | ID: mdl-38696430

This study investigated the effects of Rhizoctonia solani J.G. Kühn infestation on the volatile organic compound (VOC) emissions and biochemical composition of ten cultivars of chrysanthemum (Chrysanthemum × morifolium /Ramat./ Hemsl.) to bring new insights for future disease management strategies and the development of resistant chrysanthemum cultivars. The chrysanthemum plants were propagated vegetatively and cultivated in a greenhouse under semi-controlled conditions. VOCs emitted by the plants were collected using a specialized system and analyzed by gas chromatography/mass spectrometry. Biochemical analyses of the leaves were performed, including the extraction and quantification of chlorophylls, carotenoids, and phenolic compounds. The emission of VOCs varied among the cultivars, with some cultivars producing a wider range of VOCs compared to others. The analysis of the VOC emissions from control plants revealed differences in both their quality and quantity among the tested cultivars. R. solani infection influenced the VOC emissions, with different cultivars exhibiting varying responses to the infection. Statistical analyses confirmed the significant effects of cultivar, collection time, and their interaction on the VOCs. Correlation analyses revealed positive relationships between certain pairs of VOCs. The results show significant differences in the biochemical composition among the cultivars, with variations in chlorophyll, carotenoids, and phenolic compounds content. Interestingly, R. solani soil and leaf infestation decreased the content of carotenoids in chrysanthemums. Plants subjected to soil infestation were characterized with the highest content of phenolics. This study unveils alterations in the volatile and biochemical responses of chrysanthemum plants to R. solani infestation, which can contribute to the development of strategies for disease management and the improvement of chrysanthemum cultivars with enhanced resistance to R. solani.


Chrysanthemum , Plant Diseases , Rhizoctonia , Volatile Organic Compounds , Chrysanthemum/metabolism , Chrysanthemum/microbiology , Volatile Organic Compounds/metabolism , Volatile Organic Compounds/analysis , Rhizoctonia/physiology , Plant Diseases/microbiology , Plant Leaves/metabolism , Plant Leaves/microbiology , Plant Leaves/chemistry , Gas Chromatography-Mass Spectrometry , Chlorophyll/metabolism , Chlorophyll/analysis , Carotenoids/metabolism , Carotenoids/analysis
7.
Sci Rep ; 14(1): 10586, 2024 05 08.
Article En | MEDLINE | ID: mdl-38719951

Carotenoids play essential roles in plant growth and development and provide plants with a tolerance to a series of abiotic stresses. In this study, the function and biological significance of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase, which are responsible for the modification of the tetraterpene skeleton procedure, were isolated from Lycium chinense and analyzed. The overexpression of lycopene ß-cyclase, lycopene ε-cyclase, and ß-carotene hydroxylase promoted the accumulation of total carotenoids and photosynthesis enhancement, reactive oxygen species scavenging activity, and proline content of tobacco seedlings after exposure to the salt stress. Furthermore, the expression of the carotenoid biosynthesis genes and stress-related genes (ascorbate peroxidase, catalase, peroxidase, superoxide dismutase, and pyrroline-5-carboxylate reductase) were detected and showed increased gene expression level, which were strongly associated with the carotenoid content and reactive oxygen species scavenging activity. After exposure to salt stress, the endogenous abscisic acid content was significantly increased and much higher than those in control plants. This research contributes to the development of new breeding aimed at obtaining stronger salt tolerance plants with increased total carotenoids and vitamin A content.


Carotenoids , Gene Expression Regulation, Plant , Lycium , Nicotiana , Plant Proteins , Salt Tolerance , Carotenoids/metabolism , Nicotiana/genetics , Nicotiana/metabolism , Salt Tolerance/genetics , Lycium/genetics , Lycium/metabolism , Plant Proteins/genetics , Plant Proteins/metabolism , Plants, Genetically Modified/genetics , Reactive Oxygen Species/metabolism , Intramolecular Lyases/genetics , Intramolecular Lyases/metabolism , Photosynthesis/genetics , Mixed Function Oxygenases/genetics , Mixed Function Oxygenases/metabolism , Abscisic Acid/metabolism
8.
Theor Appl Genet ; 137(6): 126, 2024 May 10.
Article En | MEDLINE | ID: mdl-38727833

KEY MESSAGE: The gene controlling pink flesh in watermelon was finely mapped to a 55.26-kb region on chromosome 6. The prime candidate gene, Cla97C06G122120 (ClPPR5), was identified through forward genetics. Carotenoids offer numerous health benefits; while, they cannot be synthesized by the human body. Watermelon stands out as one of the richest sources of carotenoids. In this study, genetic generations derived from parental lines W15-059 (red flesh) and JQ13-3 (pink flesh) revealed the presence of the recessive gene Clpf responsible for the pink flesh (pf) trait in watermelon. Comparative analysis of pigment components and microstructure indicated that the disparity in flesh color between the parental lines primarily stemmed from variations in lycopene content, as well as differences in chromoplast number and size. Subsequent bulk segregant analysis (BSA-seq) and genetic mapping successfully narrowed down the Clpf locus to a 55.26-kb region on chromosome 6, harboring two candidate genes. Through sequence comparison and gene expression analysis, Cla97C06G122120 (annotated as a pentatricopeptide repeat, PPR) was predicted as the prime candidate gene related to pink flesh trait. To further investigate the role of the PPR gene, its homologous gene in tomato was silenced using a virus-induced system. The resulting silenced fruit lines displayed diminished carotenoid accumulation compared with the wild-type, indicating the potential regulatory function of the PPR gene in pigment accumulation. This study significantly contributes to our understanding of the forward genetics underlying watermelon flesh traits, particularly in relation to carotenoid accumulation. The findings lay essential groundwork for elucidating mechanisms governing pigment synthesis and deposition in watermelon flesh, thereby providing valuable insights for future breeding strategies aimed at enhancing fruit quality and nutritional value.


Chromosome Mapping , Citrullus , Fruit , Phenotype , Pigmentation , Plant Proteins , Citrullus/genetics , Citrullus/metabolism , Pigmentation/genetics , Plant Proteins/genetics , Plant Proteins/metabolism , Fruit/genetics , Genes, Plant , Carotenoids/metabolism , Genes, Recessive , Gene Expression Regulation, Plant , Chromosomes, Plant/genetics , Lycopene/metabolism
9.
BMC Plant Biol ; 24(1): 369, 2024 May 07.
Article En | MEDLINE | ID: mdl-38711012

BACKGROUND: The increasing demand for saffron metabolites in various commercial industries, including medicine, food, cosmetics, and dyeing, is driven by the discovery of their diverse applications. Saffron, derived from Crocus sativus stigmas, is the most expensive spice, and there is a need to explore additional sources to meet global consumption demands. In this study, we focused on yellow-flowering crocuses and examined their tepals to identify saffron-like compounds. RESULTS: Through metabolomic and transcriptomic approaches, our investigation provides valuable insights into the biosynthesis of compounds in yellow-tepal crocuses that are similar to those found in saffron. The results of our study support the potential use of yellow-tepal crocuses as a source of various crocins (crocetin glycosylated derivatives) and flavonoids. CONCLUSIONS: Our findings suggest that yellow-tepal crocuses have the potential to serve as a viable excessive source of some saffron metabolites. The identification of crocins and flavonoids in these crocuses highlights their suitability for meeting the demands of various industries that utilize saffron compounds. Further exploration and utilization of yellow-tepal crocuses could contribute to addressing the growing global demand for saffron-related products.


Carotenoids , Crocus , Flowers , Metabolomics , Crocus/genetics , Crocus/metabolism , Carotenoids/metabolism , Flowers/genetics , Flowers/metabolism , Flavonoids/metabolism , Gene Expression Profiling , Transcriptome , Metabolome
10.
Sci Rep ; 14(1): 8081, 2024 04 06.
Article En | MEDLINE | ID: mdl-38582923

Astaxanthin, a versatile C40 carotenoid prized for its applications in food, cosmetics, and health, is a bright red pigment with powerful antioxidant properties. To enhance astaxanthin production in Corynebacterium glutamicum, we employed rational pathway engineering strategies, focused on improving precursor availability and optimizing terminal oxy-functionalized C40 carotenoid biosynthesis. Our efforts resulted in an increased astaxanthin precursor supply with 1.5-fold higher ß-carotene production with strain BETA6 (18 mg g-1 CDW). Further advancements in astaxanthin production were made by fine-tuning the expression of the ß-carotene hydroxylase gene crtZ and ß-carotene ketolase gene crtW, yielding a nearly fivefold increase in astaxanthin (strain ASTA**), with astaxanthin constituting 72% of total carotenoids. ASTA** was successfully transferred to a 2 L fed-batch fermentation with an enhanced titer of 103 mg L-1 astaxanthin with a volumetric productivity of 1.5 mg L-1 h-1. Based on this strain a pathway expansion was achieved towards glycosylated C40 carotenoids under heterologous expression of the glycosyltransferase gene crtX. To the best of our knowledge, this is the first time astaxanthin-ß-D-diglucoside was produced with C. glutamicum achieving high titers of microbial C40 glucosides of 39 mg L-1. This study showcases the potential of pathway engineering to unlock novel C40 carotenoid variants for diverse industrial applications.


Carotenoids , Corynebacterium glutamicum , Carotenoids/metabolism , Corynebacterium glutamicum/genetics , Corynebacterium glutamicum/metabolism , Xanthophylls/metabolism , beta Carotene/metabolism , Metabolic Engineering/methods
11.
Molecules ; 29(7)2024 Apr 02.
Article En | MEDLINE | ID: mdl-38611864

The Passiflora genus is recognised for its ethnopharmacological, sensorial, and nutritional significance. Yet, the screening of its dietary and bioactive molecules has mainly targeted hydrophilic metabolites. Following the PRISMA-P protocol, this review assessed the current knowledge on carotenoid composition and analysis within Passiflora, examining 968 records from seven databases and including 17 studies focusing on carotenoid separation and identification in plant parts. Those publications originated in America and Asia. P. edulis was the most frequently examined species of a total of ten, while pulp was the most studied plant part (16 studies). Carotenoid analysis involved primarily high-performance liquid chromatography separation on C18 columns and detection using diode array detectors (64.71%). Most studies identified the provitamin A ß-carotene and xanthophylls lutein and zeaxanthin, with their geometric configuration often neglected. Only one study described carotenoid esters. Besides the methodology's insufficient description, the lack of use of more accurate techniques and practices led to a high risk of bias in the carotenoid assignment in 17.65% of the articles. This review highlights the opportunity to broaden carotenoid studies to other species and parts within the diverse Passiflora genus, especially to wild, locally available fruits, which may have a strategic role in enhancing food diversity and security amidst climatic changes. Additionally, it urges the use of more accurate and efficient analytical methods based on green chemistry to better identify Passiflora carotenoids.


Passiflora , Systematic Reviews as Topic , Meta-Analysis as Topic , Carotenoids , Fruit
12.
Int J Mol Sci ; 25(7)2024 Mar 26.
Article En | MEDLINE | ID: mdl-38612498

Sericin derived from the white cocoon of Bombyx mori has been attracting more attention for its utilization in food, cosmetics, and biomedicine. The potential health benefits of natural carotenoids for humans have also been well-established. Some rare strains of Bombyx mori (B. mori) produce yellow-red cocoons, which endow a potential of natural carotenoid-containing sericin. We hypothesized that natural carotenoid-containing sericin from yellow-red cocoons would exhibit better properties compared with white cocoon sericin. To investigate the physicochemical attributes of natural carotenoid-containing sericin, we bred two silkworm strains from one common ancestor, namely XS7 and XS8, which exhibited different cocoon colors as a result of the inconsistent distribution of lutein and ß-carotene. Compared with white cocoon sericin, the interaction between carotenoids and sericin molecules in carotenoid-containing sericin resulted in a unique fluorescence emission at 530, 564 nm. The incorporation of carotenoids enhanced the antibacterial effect, anti-cancer ability, cytocompatibility, and antioxidant of sericin, suggesting potential wide-ranging applications of natural carotenoid-containing sericin as a biomass material. We also found differences in fluorescence characteristics, antimicrobial effects, anti-cancer ability, and antioxidants between XS7 and XS8 sericin. Our work for the first time suggested a better application potential of natural carotenoid-containing sericin as a biomass material than frequently used white cocoon sericin.


Bombyx , Sericins , Humans , Animals , Carotenoids/pharmacology , Sericins/pharmacology , Antioxidants/pharmacology , beta Carotene/pharmacology
13.
Int J Mol Sci ; 25(7)2024 Mar 29.
Article En | MEDLINE | ID: mdl-38612673

Pumpkin (Cucurbita maxima) is an important vegetable crop of the Cucurbitaceae plant family. The fruits of pumpkin are often used as directly edible food or raw material for a number of processed foods. In nature, mature pumpkin fruits differ in size, shape, and color. The Atlantic Giant (AG) cultivar has the world's largest fruits and is described as the giant pumpkin. AG is well-known for its large and bright-colored fruits with high ornamental and economic value. At present, there are insufficient studies that have focused on the formation factors of the AG cultivar. To address these knowledge gaps, we performed comparative transcriptome, proteome, and metabolome analysis of fruits from the AG cultivar and a pumpkin with relatively small fruit (Hubbard). The results indicate that up-regulation of gene-encoded expansins contributed to fruit cell expansion, and the increased presence of photoassimilates (stachyose and D-glucose) and jasmonic acid (JA) accumulation worked together in terms of the formation of large fruit in the AG cultivar. Notably, perhaps due to the rapid transport of photoassimilates, abundant stachyose that was not converted into glucose in time was detected in giant pumpkin fruits, implying that a unique mode of assimilate unloading is in existence in the AG cultivar. The potential molecular regulatory network of photoassimilate metabolism closely related to pumpkin fruit expansion was also investigated, finding that three MYB transcription factors, namely CmaCh02G015900, CmaCh01G018100, and CmaCh06G011110, may be involved in metabolic regulation. In addition, neoxanthin (a type of carotenoid) exhibited decreased accumulation that was attributed to the down-regulation of carotenoid biosynthesis genes in AG fruits, which may lead to pigmentation differences between the two pumpkin cultivars. Our current work will provide new insights into the potential formation factors of giant pumpkins for further systematic elucidation.


Cucurbita , Fruit , Fruit/genetics , Cucurbita/genetics , Multiomics , Down-Regulation , Carotenoids , Glucose
14.
BMC Plant Biol ; 24(1): 265, 2024 Apr 10.
Article En | MEDLINE | ID: mdl-38600480

BACKGROUND: Leaf variegation is an intriguing phenomenon observed in many plant species. However, questions remain on its mechanisms causing patterns of different colours. In this study, we describe a tomato plant detected in an M2 population of EMS mutagenised seeds, showing variegated leaves with sectors of dark green (DG), medium green (MG), light green (LG) hues, and white (WH). Cells and tissues of these classes, along with wild-type tomato plants, were studied by light, fluorescence, and transmission electron microscopy. We also measured chlorophyll a/b and carotene and quantified the variegation patterns with a machine-learning image analysis tool. We compared the genomes of pooled plants with wild-type-like and mutant phenotypes in a segregating F2 population to reveal candidate genes responsible for the variegation. RESULTS: A genetic test demonstrated a recessive nuclear mutation caused the variegated phenotype. Cross-sections displayed distinct anatomy of four-leaf phenotypes, suggesting a stepwise mesophyll degradation. DG sectors showed large spongy layers, MG presented intercellular spaces in palisade layers, and LG displayed deformed palisade cells. Electron photomicrographs of those mesophyll cells demonstrated a gradual breakdown of the chloroplasts. Chlorophyll a/b and carotene were proportionally reduced in the sectors with reduced green pigments, whereas white sectors have hardly any of these pigments. The colour segmentation system based on machine-learning image analysis was able to convert leaf variegation patterns into binary images for quantitative measurements. The bulk segregant analysis of pooled wild-type-like and variegated progeny enabled the identification of SNP and InDels via bioinformatic analysis. The mutation mapping bioinformatic pipeline revealed a region with three candidate genes in chromosome 4, of which the FtsH-like protein precursor (LOC100037730) carries an SNP that we consider the causal variegated phenotype mutation. Phylogenetic analysis shows the candidate is evolutionary closest to the Arabidopsis VAR1. The synonymous mutation created by the SNP generated a miRNA binding site, potentially disrupting the photoprotection mechanism and thylakoid development, resulting in leaf variegation. CONCLUSION: We described the histology, anatomy, physiology, and image analysis of four classes of cell layers and chloroplast degradation in a tomato plant with a variegated phenotype. The genomics and bioinformatics pipeline revealed a VAR1-related FtsH mutant, the first of its kind in tomato variegation phenotypes. The miRNA binding site of the mutated SNP opens the way to future studies on its epigenetic mechanism underlying the variegation.


Arabidopsis Proteins , Arabidopsis , MicroRNAs , Solanum lycopersicum , Solanum lycopersicum/genetics , Chlorophyll A/metabolism , Phylogeny , Chloroplasts/genetics , Arabidopsis/genetics , Mutation , Phenotype , Plant Leaves/metabolism , Carotenoids/metabolism , MicroRNAs/metabolism , Protein Precursors/metabolism , Metalloendopeptidases/genetics , Metalloendopeptidases/metabolism , Arabidopsis Proteins/genetics
15.
Urologiia ; (1): 162-167, 2024 Mar.
Article Ru | MEDLINE | ID: mdl-38650422

Currently, the significance of the chronic prostatitis (CP) is undoubted. Oxidative stress is considered as one of the standard mechanisms of cellular damage that is associated with inflammatory diseases such as CP. When choosing the combination therapy for this group of patients, a correction of oxidative stress is pathogenetically justified. Literature data about the pathogenetic feasibility and prospects of using a biologically active complex containing flavonoids and carotenoids quercetin, lycopene and naringin as part of the combination treatment of patients with CP are presented in the article. Considering the various effects of the biologically active complex Querceprost, containing quercetin, lycopene and naringin, among which antioxidant, anti-inflammatory, antimicrobial and immunomodulatory are of greatest importance, as well as taking into account the synergistic effect of flavonoids and carotenoids, we suggest that Querceprost is promising component of combination treatment of patients with CP.


Antioxidants , Prostatitis , Male , Humans , Prostatitis/drug therapy , Antioxidants/administration & dosage , Antioxidants/therapeutic use , Chronic Disease , Drug Therapy, Combination , Quercetin/administration & dosage , Quercetin/pharmacology , Quercetin/therapeutic use , Oxidative Stress/drug effects , Carotenoids/administration & dosage , Carotenoids/therapeutic use , Lycopene/administration & dosage , Lycopene/pharmacology , Lycopene/therapeutic use , Flavanones/administration & dosage , Flavanones/pharmacology , Flavanones/therapeutic use
16.
Anal Methods ; 16(16): 2449-2455, 2024 Apr 25.
Article En | MEDLINE | ID: mdl-38563199

Carotenoids are yellow, orange, and red pigments commonly found in plants. In leaves, these molecules are essential for photosynthesis, but they also play a major role in plant growth and development. Efficiently monitoring concentrations of specific carotenoids in plant tissues could help to explain plant responses to environmental stressors, infection and disease, fertilization, and other conditions. Previously, Raman methods have been used to demonstrate a correlation between plant fitness and the carotenoid content of leaves. Due to solvatochromatic effects and structural similarities within the carotenoid family, current Raman spectroscopy techniques struggle to assign signals to specific carotenoids with certainty, complicating the determination of amounts of individual carotenoids present in a sample. In this work, we use thin layer chromatography-Raman spectroscopy, or TLC-Raman, to identify and quantify carotenoids extracted from tomato leaves. These quick and accurate methods could be applied to study the relationship between pigment content and a number of factors affecting plant health.


Carotenoids , Plant Leaves , Solanum lycopersicum , Spectrum Analysis, Raman , Plant Leaves/chemistry , Spectrum Analysis, Raman/methods , Chromatography, Thin Layer/methods , Carotenoids/analysis , Carotenoids/chemistry , Solanum lycopersicum/chemistry , Solanum lycopersicum/metabolism , Pigments, Biological/analysis , Pigments, Biological/chemistry
17.
PLoS One ; 19(4): e0296840, 2024.
Article En | MEDLINE | ID: mdl-38625852

Kale is a nutrient-dense leafy vegetable associated with wide-ranging health benefits. It is tolerant of drought and temperature fluctuations, and could thus serve an increasingly important role in providing a safe and nutritious food supply during the climate crisis, while kale's ease of cultivation and ability to be grown in a wide range of soils make it a good fit for urban agriculture. In this pilot study we explored potential differences between kale grown at urban versus rural farms. We planted kale seedlings (Darkibor variety) at three urban and four rural farms in and around Baltimore City, Maryland, instructed farmers to cultivate them using their usual growing practices, harvested the kale from fields and points of distribution, and analyzed it for concentrations of carotenoids, vitamins C and K1, ten nutritional elements, and eight non-essential metals. Although sample sizes for some analyses were in some cases too small to produce statistically significant results, we identified potentially meaningful differences in concentrations of several components between urban and rural kale samples. Compared to urban samples, mean concentrations of carotenoids and vitamins were 22-38% higher in rural field samples. By contrast, mean concentrations for eight nutritional elements were higher in urban field samples by as much as 413% for iron. Compared to rural field samples, mean concentrations of nine non-essential metals were higher in urban samples, although lead and cadmium concentrations for all samples were below public health guidelines. Some urban-rural differences were more pronounced than those identified in prior research. For six elements, variance within urban and rural farms was greater than variance between urban and rural farms, suggesting urbanicity may not be the primary driver of some observed differences. For some nutrients, mean concentrations were higher than upper ranges reported in prior estimates, suggesting kale may have the potential to be more nutrient-dense than previously estimated. The nutritive and metals composition of this important crop, and the factors that influence it, merit continued investigation given its growing popularity.


Brassica , Pilot Projects , Farms , Nutrients , Vitamins , Carotenoids
18.
Commun Biol ; 7(1): 448, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605243

Carotenoids are hydrophobic pigments binding to diverse carotenoproteins, many of which remain unexplored. Focusing on yellow gregarious locusts accumulating cuticular carotenoids, here we use engineered Escherichia coli cells to reconstitute a functional water-soluble ß-carotene-binding protein, BBP. HPLC and Raman spectroscopy confirmed that recombinant BBP avidly binds ß-carotene, inducing the unusual vibronic structure of its absorbance spectrum, just like native BBP extracted from the locust cuticles. Bound to recombinant BBP, ß-carotene exhibits pronounced circular dichroism and allows BBP to withstand heating (T0.5 = 68 °C), detergents and pH variations. Using bacteria producing distinct xanthophylls we demonstrate that, while ß-carotene is the preferred carotenoid, BBP can also extract from membranes ketocarotenoids and, very poorly, hydroxycarotenoids. We show that BBP-carotenoid complex reversibly binds to chitin, but not to chitosan, implying the role for chitin acetyl groups in cuticular BBP deposition. Reconstructing such locust coloration mechanism in vitro paves the way for structural studies and BBP applications.


Grasshoppers , beta Carotene , Animals , Grasshoppers/metabolism , Carotenoids/metabolism , Xanthophylls , Chitin
19.
BMC Plant Biol ; 24(1): 272, 2024 Apr 11.
Article En | MEDLINE | ID: mdl-38605293

BACKGROUND: Glycyrrhiza inflata Bat. and Glycyrrhiza uralensis Fisch. are both original plants of 'Gan Cao' in the Chinese Pharmacopoeia, and G. uralensis is currently the mainstream variety of licorice and has a long history of use in traditional Chinese medicine. Both of these species have shown some degree of tolerance to salinity, G. inflata exhibits higher salt tolerance than G. uralensis and can grow on saline meadow soils and crusty saline soils. However, the regulatory mechanism responsible for the differences in salt tolerance between different licorice species is unclear. Due to land area-related limitations, the excavation and cultivation of licorice varieties in saline-alkaline areas that both exhibit tolerance to salt and contain highly efficient active substances are needed. The systematic identification of the key genes and pathways associated with the differences in salt tolerance between these two licorice species will be beneficial for cultivating high-quality salt-tolerant licorice G. uralensis plant varieties and for the long-term development of the licorice industry. In this research, the differences in growth response indicators, ion accumulation, and transcription expression between the two licorice species were analyzed. RESULTS: This research included a comprehensive comparison of growth response indicators, including biomass, malondialdehyde (MDA) levels, and total flavonoids content, between two distinct licorice species and an analysis of their ion content and transcriptome expression. In contrast to the result found for G. uralensis, the salt treatment of G. inflata ensured the stable accumulation of biomass and total flavonoids at 0.5 d, 15 d, and 30 d and the restriction of Na+ to the roots while allowing for more K+ and Ca2+ accumulation. Notably, despite the increase in the Na+ concentration in the roots, the MDA concentration remained low. Transcriptome analysis revealed that the regulatory effects of growth and ion transport on the two licorice species were strongly correlated with the following pathways and relevant DEGs: the TCA cycle, the pentose phosphate pathway, and the photosynthetic carbon fixation pathway involved in carbon metabolism; Casparian strip formation (lignin oxidation and translocation, suberin formation) in response to Na+; K+ and Ca2+ translocation, organic solute synthesis (arginine, polyamines, GABA) in response to osmotic stresses; and the biosynthesis of the nonenzymatic antioxidants carotenoids and flavonoids in response to antioxidant stress. Furthermore, the differential expression of the DEGs related to ABA signaling in hormone transduction and the regulation of transcription factors such as the HSF and GRAS families may be associated with the remarkable salt tolerance of G. inflata. CONCLUSION: Compared with G. uralensis, G. inflata exhibits greater salt tolerance, which is primarily attributable to factors related to carbon metabolism, endodermal barrier formation and development, K+ and Ca2+ transport, biosynthesis of carotenoids and flavonoids, and regulation of signal transduction pathways and salt-responsive transcription factors. The formation of the Casparian strip, especially the transport and oxidation of lignin precursors, is likely the primary reason for the markedly higher amount of Na+ in the roots of G. inflata than in those of G. uralensis. The tendency of G. inflata to maintain low MDA levels in its roots under such conditions is closely related to the biosynthesis of flavonoids and carotenoids and the maintenance of the osmotic balance in roots by the absorption of more K+ and Ca2+ to meet growth needs. These findings may provide new insights for developing and cultivating G. uralensis plant species selected for cultivation in saline environments or soils managed through agronomic practices that involve the use of water with a high salt content.


Glycyrrhiza uralensis , Glycyrrhiza , Glycyrrhiza/metabolism , Salt Tolerance/genetics , Transcriptome , Lignin/metabolism , Flavonoids/metabolism , Antioxidants/metabolism , Carotenoids/metabolism , Ion Transport , Carbon/metabolism , Soil , Transcription Factors/genetics
20.
Sci Rep ; 14(1): 8514, 2024 04 12.
Article En | MEDLINE | ID: mdl-38609452

The study aimed to measure the carotenoid (Car) and pH contents of carrots using hyperspectral imaging. A total of 300 images were collected using a hyperspectral imaging system, covering 472 wavebands from 400 to 1000 nm. Regions of interest (ROIs) were defined to extract average spectra from the hyperspectral images (HIS). We developed two models: least squares support vector machine (LS-SVM) and partial least squares regression (PLSR) to establish a quantitative analysis between the pigment amounts and spectra. The spectra and pigment contents were predicted and correlated using these models. The selection of EWs for modeling was done using the Successive Projections Algorithm (SPA), regression coefficients (RC) from PLSR models, and LS-SVM. The results demonstrated that hyperspectral imaging could effectively evaluate the internal attributes of carrot cortex and xylem. Moreover, these models accurately predicted the Car and pH contents of the carrot parts. This study provides a valuable approach for variable selection and modeling in hyperspectral imaging studies of carrots.


Daucus carota , Hyperspectral Imaging , Multivariate Analysis , Algorithms , Carotenoids
...